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ABSTRACT: Conductive hydrogels are widely used in various
applications, such as artificial skin, flexible and implantable
bioelectronics, and tissue engineering. However, it is still a
challenge to formulate hydrogels with high electrical con-
ductivity without compromising their physicochemical proper-
ties (e.g., toughness, stretchability, and biocompatibility).
Additionally, incorporating other functions, such as self-healing,
shape memory, and wet adhesion, into conductive hydrogels is
critical to many practical applications of hydrogel bioelec-
tronics. In this Review, we highlight recent progress in the
development of functional conductive hydrogels. We, then,
discuss the potential applications and challenges faced by
conductive hydrogels in the areas of wearable/implantable
electronics and cell/tissue engineering. Conductive hydrogel can serve as an important building block for bioelectronic devices
in personalized healthcare and other bioengineering areas.

Bioelectronics interfacing with human body/organ has
emerged as a bridge to explore physiological
information in our daily lives. Owing to their

multifunctionality in personalized health monitoring, bioelec-
tronics have been widely employed in various biomedical
applications, including electronic skin,1−5 wearable/implant-
able devices,6−11 and soft robotics.12−14 Currently, most
bioelectronics devices are based on inorganic materials with
appropriate electrical conductivity, such as metals and
silicon.15−20 However, the chemical and mechanical properties
of those inorganic materials are strikingly different from these
of biological tissues, which can lead to some serious problems
during the implement of the inorganic materials based
bioelectronic devices, including nonconforming contact
between the devices and the surface of skin or tissue,
unreliable signal collection, as well as causing inflammatory
responses the body.21−23 Many of these problems cannot be
easily solved by only using inorganic materials.

Conductive hydrogels have shown great potential in
bioelectronics.2,24−30 Conductive hydrogels can be synthesized
using either only conductive polymers, for example, poly(3,4-
ethylenedioxythiophene) (PEDOT) or polyaniline
(PANI),31,32 as the main component of the hydrogel matrix
or incorporating conductive additives, such as conductive
polymers, carbon nanotubes (CNTs), and metal nanowires
into an existing nonconductive hydrogel matrix.33−37 Con-
ductive hydrogels have the potential to be an alternative option
to traditional inorganic materials in bioelectronics owing to
their proper electronic, mechanical, and chemical properties.
The high-water content of hydrogels allows the transport of
biological and chemical molecules, thus providing an
extracellular matrix-like (ECM-like) environment to facilitate
the exchange of biological molecules and markers across
interfaces. The tunable chemical structure of the polymer
network endows conductive hydrogels with tunable mechanical
properties to match those of tissues (elastic modulus from 0.1
to 100 KPa).38 Owing to their excellent properties, conductive
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hydrogels have attracted great attention in biomedical
applications such as wearable/implantable devices and
bioelectronics at cell/tissue interfaces (Figure 1).
The main challenge for the development of conductive

hydrogels for bioelectronics is to achieve high conductivity,
while not to compromise the hydrogels’ physicochemical
properties, such as toughness, stretchability, and biocompati-
bility. For hydrogels based on pure conductive polymers, the
conductivity originates from conjugated structures (conjugated

π bond) of the conductive polymers.39 Such conjugated
structures are inherently rigid, which impairs the mechanical
properties of conductive hydrogels. One strategy to prepare
conductive hydrogels relies on mixing or in situ polymerizing
conductive polymers within an existed nonconductive hydrogel
matrix to form an interpenetrating conductive hydrogel
network. However, such hydrogels suffer from low electrical
conductivity because of the nonconductive hydrogel matrix in
interpenetrating network acting as an electrical insulator.

Figure 1. Functional conductive hydrogels for bioelectronics in biomedical applications. The left column presents the conductive hydrogels
used for physical, chemical, and electrophysiological signals detection, respectively. [Reproduced with permission from refs 6 and 43.
Copyright 2016 Nature Publishing Group and 2018 the Royal Society of Chemistry.] The middle column summarizes important functions of
conductive hydrogels. [Reproduced with permission from refs 44−47. Copyright 2016 and 2018 Wiley-VCH and 2018 and 2019 AAAS.] The
right column shows the application of conductive hydrogels in the areas of wearable electronics, cell scaffold and tissue engineering, and
implantable electronics, respectively. [Reproduced with permission from refs 48−51. Copyright 2019 Elsevier, 2019 Nature Publishing
Group, 2018 Wiley-VCH, and 2017 The Royal Society of Chemistry.]

Figure 2. Structures of several types of conductive hydrogels. Conductive hydrogel can be synthesized by using conductive polymers,
conductive fillers, free ions, and their mixtures. The formed hydrogels can be classified as electronic, ionic, and the hybrid electronic−ionic
conducting hydrogels.
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Another common strategy to improve the conductivity of the
hydrogels is to add conductive fillers, such as CNTs, graphene,
or metal nanoparticles/wires. This approach generally requires
high contents of conductive fillers, which may cause phase
separation of the hydrogel matrix and fillers, resulting in low
stretchability, weak mechanical toughness, and poor fatigue
resistance. Additionally, limited by their intrinsic weakness of
inhomogeneous hydrogel networks, most of the previously
reported conductive hydrogels are not able to sustain cyclic/
multiple loading-unloading cycles. To achieve high conductiv-
ity and high toughness is, therefore, one major goal in the
design of conductive hydrogels.
Developing multifunctional conductive hydrogels is also

critical to the success of hydrogel bioelectronics. Various
functionalities, such as self-healing, strong tissue adhesion, and
shape memory, can be incorporated into conductive hydrogels
via tuning the chemical composition and physical structure of
the hydrogels.40−42 This Review first reviews recent progress in
multifunctional conductive hydrogels for bioelectronics and
tissue engineering and, then, discusses the remaining
challenges and obstacles in the field. This Review aims to
provide useful insights and guidelines into the design and
development of conductive hydrogels for various biomedical
applications.

■ ENGINEERING FUNCTIONAL CONDUCTIVE
HYDROGELS

Conductive hydrogels are usually prepared by (1) building
single component hydrogel networks by self-polymerization or
self-assembly of conductive polymers/fillers, (2) constructing
interpenetrating hydrogel networks by doping conductive
polymers/fillers, (3) diffusing free ions, and (4) embedding
conductive fillers/free ions into an existing non-conductive
hydrogel matrix (Figure 2). Depending on the conductive
mechanism, the fabricated hydrogels can be classified as
electronic,39 ionic,52 and hybrid electronic−ionic conductive
hydrogels.53 In general, conductive polymer-based hydrogels
mainly rely on electronic conduction, as the conductivity
origins from the conjugated π bond of the conductive
polymers, such as PEDOT, PANI, polypyrrole (PPy), and
polythiophene (PT).39,54−56 Conductive filler-based hydrogels
mainly rely on electronic conduction of the fillers, which are
often graphene, CNTs, and metal nanoparticles/wires.52,57−59

For those conductive hydrogels containing free ions such as
salts and ionic liquids, they acquire ionic conductivity due to
the migration of ions.27,60 Notably, many conductive hydrogels
possess both electronic and ionic conduction.53 For example,
poly(styrenesulfonate) (PSS) doped PEDOT (PEDOT:PSS)
is commonly used to prepare conductive hydrogels with mixed
electronic−ionic conduction because of the charge-conducting
PEDOT backbone and ion-conducting PSS chains.33 Con-

ductive hydrogels could exhibit tailorable conductivity by
designing an electronic, ionic, or hybrid conductive network in
the hydrogel systems. To improve the conductivity, the most
commonly used method is to construct a conductive network

with long conjugated polymer chains for conductive polymer-
based hydrogels, and to increase the density of the fillers for
conductive filler-based hydrogels. In addition, advanced
processing methods are widely used in the fabrication of
functional conductive hydrogels, such as three-dimensional
printing (bio-plotting printing, light-based printing, and inkjet
printing),30,61,62 electron-beam lithography,63 and electro-
chemical gelation.64

Many bioelectronics devices require high stretchability and
conductivity in order to function properly during the
movement of human body, which presents a big challenge
for the design of conductive hydrogels.52,65−68 Increasing the
content of conductive fillers could improve the conductivity of
the hydrogel. However, this may lead to phase separation
between hydrogel matrix and fillers, which results in low
stretchability. For conductive polymer-based hydrogels, the
conjugated structures of polymer are inherently rigid, which
impairs the mechanical properties of the fabricated hydrogels.
It is difficult for a hydrogel to own high stretchability and high
conductivity simultaneously.
Various approaches have been employed to improve the

stretchability of conductive polymer-based hydrogels.33,64,69,70

PEDOT:PSS hydrogel exhibits moderate electrical conductiv-
ity and fracture strain (about 5%).71 However, the strechability
of a pure PEDOT:PSS hydrogel can be dramatically enhanced
to over 35% by introducing an interconnected network of
PEDOT:PSS nanofibrils using solvent annealing.72 Alterna-
tively, the stretchability of PEDOT:PSS hydrogels can also be
enhanced by adding ionic liquid plasticizers (1-butyl-3-
methylimidazolium octyl surfate) (Figure 3a), which results
in a conductive hydrogel with a conductivity comparable to
pure PEDOT:PSS (over 4100 S/cm) even under 100%
strain.73 Double/multi-network hydrogels have also been
developed to achieve high strechability while maintaining the
conductivity of the hydrogels. An interpenetrating polyaniline
(PANI) and poly(acrylamide-co-hydroxyethyl methyl acrylate)
(P-(AAm-co-HEMA)) double-network conductive hydrogel
was fabricated with the assistance of hydrogen bond between
hydrogel networks (Figure 3b).74 The interpenetrating net-
works endowed high conductive hydrogel with outstanding
strength (about 220% strain) and toughness (over 9 MJ/m3),
together with excellent linearity under high strain levels.
Engineering proper interactions between the hydrogel

network and the conductive fillers can substantially enhance
the toughness and stretchability of filler based conductive
hydrogels.75,76 Graphene oxide (GO) and CNT materials are
widely used as fillers to prepare high stretchable conductive
hydrogels benefited from their multi-functionality in building
strong covalent/or non-covalent interactions with most
polymer chains.77,78 Lu et al. developed a stretchable
polyacrymide-based (PAM) conductive hydrogel by introduc-
ing GO and polydopamine (PDA) into a PAM pre-gel
solution. GO was converted into partially reduced graphene
oxide (pGO) or fully reduced graphene oxide (rGO) through
PDA reduction GO, forming a conducting pathway. The
unreduced GO filler, PDA, and PAM are able to form strong
non-covalent interactions, including hydrogen bonding, π−π
stacking, and electrostatic interactions (Figure 3c). Taking
advantages of the non-covalent interactions, the prepared
PDA-pGO-PAM hydrogel achieved impressive stretchability
(extension ratio λ = 35), and good electrical conductivity (0.08
S cm−1).79 Additionally, macromolecular/micro-spheres, de-
vised as zippable and energy-dissipating centers, have also been

Conductive hydrogels could exhibit
tailorable conductivity by designing an
electronic, ionic, or hybrid conductive
network in the hydrogel systems.
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incorporated into conductive hydrogel networks to enhance
the roughness of the hydrogels.80 Zhang et al. synthesized a
hydrogel with two-phase structure by in situ polymerization of
polyacrylamide (PAAm) and PANI with chitosan micro-
spheres (CSMs).44 Because of the existence of energy-
dissipating centers (CSMs) and interpenetrating double
networks (PAAm and PANI) (Figure 3d), the formed

conductive hydrogel exhibited extremely stretchability
(626%), toughness (879 kPa), along with high conductivity
(5 S m−1 with aniline concentration of 0.1 mol L−1). Various
other methods have also been utilized for preparing stretchable
and tough conductive hydrogels such as those based on
molecular sliding mechanism, pre-stretching/folding template,

Figure 3. Schematic of tough and stretchable conductive hydrogels: (a) a highly stretchable conductive PEDOT:PSS hydrogel by
incorporating ionic additives-assisted [Reproduced with permission from ref 73. Copyright 2017 AAAS], (b) an interpenetrating PANI/
P(AAm-co-HEMA) hydrogels featured with high conductivity and stretchable ability [Reproduced with permission from ref 74. Copyright
2018 American Chemical Society], (c) a nanocomposite conductive hydrogel reinforced by pGO [Reproduced with permission from ref 79.
Copyright 2017 Wiley-VCH], and (d) an ultra-stretchable conductive hydrogel formed by embedding chitosan microspheres into PAAm and
PANI networks [Reproduced with permission from ref 44. Copyright 2016 Wiley-VCH].

Figure 4. Self-healing and injectable conductive hydrogels. (a) Schematic illustration and mechanism diagram of fabricating intrinsic self-
healing conductive hydrogels. (b) Self-healing conductive hydrogel based on transferring CNT film into a repairable carrageenan/PAAm
hydrogel. [Reproduced with permission from ref 106. Copyright 2020 American Chemical Society.] (c) Injectable self-healing conductive
hydrogels. The upper panel (i) shows the subcutaneous injection of a Dex-AT/CECS conductive hydrogel. [Reproduced with permission
from ref 109. Copyright 2019 Elsevier.] The lower panel (ii) shows an injectable PANI/PSS-UPy conductive hydrogel that can pass through
a needle and be molded into different shapes. [Reproduced with permission from ref 110. Copyright 2019 American Chemical Society.]
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and deformable structures (wavy, island-bridge, and serpen-
tine).81−87

Conductive hydrogels with self-healing properties can
significantly prolong the service time of bioelectronic devices
and, thus, are very useful in a variety of applications, including
cardiovascular repair, electronic skin, and soft robotics.88−90

Many conductive hydrogels with high self-healing property are
based on the intrinsic repair method via designing reversible
(weak) interactions in the polymer networks. Under low
external stress, the weak bonds can break first and adsorb the
energy to protect the covalent polymer network. When the
covalent polymer network of the hydrogel is damaged under
higher external stress, the reversible bonds will reform to
restore the properties of the hydrogel. Both noncovalent
interactions including electrostatic interaction,91 hydrophobic
interaction,92,93 hydrogen bond,94 and host−guest interac-
tion,95 as well as dynamic covalent bonds such as Diels−Alder
reaction,96 imine bond,97,98 boronate ester bond,99 coordina-
tion bond,100 and reversible radical reaction,101 have been
widely used to construct self-healing hydrogels (Figure 4a).
The same strategies can be adopted in conductive hydrogel
systems. For example, electrostatic interactions (between
carboxylic groups, NH2 groups, and ferric ions) have been
incorporated in PPy-based conductive hydrogels to generate
hydrogels with self-healing capabilities to restore the
mechanical and conductive properties of the hydrogels.102,103

Ren et al. reported a self-healing PPy/alginate-gelatin hydrogel
based on the Schiff-base units formed between the aldehyde
groups (form oxidized sodium alginate) and amines groups
(from gelatin), which act as dynamic crosslinking points to
repair the hydrogel.104

Other approaches have also been employed to develop self-
healing conductive hydrogels. By introducing a conductive PPy
network into an agarose hydrogel system, Jaehyun et al.
developed an agarose/PPy-based self-healing conductive
hydrogel responds to external stimuli.105 Agarose undergoes
a thermally reversible sol−gel transition (above 120 °C), which
gives rise to a self-healing function to the hydrogel. The
conductivity of the gel increases while the self-healing property
deteriorates as a function of PPy concentration. Some self-
healing conductive hydrogels are developed through the
assistance of a substrate or composite material. For example,
Han et al. reported a CNT-based self-healing conductive
hydrogel with the assistance of a repairable carrageenan/PAAm
hydrogel layer (Figure 4b).106 A CNT film was transferred
onto a carrageenan/PAAm hydrogel layer via a transfer
printing process. The double helices of carrageenan can
transfer to free coils at a temperature of above 50 °C, and
reform new double helices below the melting temperature,
which provides the self-healing capability to the carrageenan/
PAAm hydrogel substrate. The mechanical properties of the
hydrogel can be further improved by the large number of
hydrogen bonds formed between the carrageenan and PAAm
chains.
By properly controlling the gelation time, conductive

hydrogels can be injectable.107,108 Injectable conductive
hydrogels can serve as tissue scaffold and delivery vehicles
for electrical signal sensitive cell therapy, avoiding potential
infection and pain caused by surgery. Hydrogels based on N-
carboxyethyl chitosan (CECS) and dextran-grafted tetraanilin
(Dex-AT) showed adequate electrical conductivity (10−2 mS
cm−1) and can be injected into rat subcutaneously for muscle
regeneration and cell therapy (Figure 4c(i)).109 Chen et al.

Figure 5. Adhesive conductive hydrogels. (a) Schematic and pictures showing adhesion of conductive polymer hydrogel on insulated/
conductive substrates. [Reproduced with permission from ref 116. Copyright 2020 AAAS.] An adhesive conductive hydrogel fabricated by
interfacial polymerized PPy and SF showing (b) adhesion on sweaty human skin and wet pig heart surface and (c) used for
electrocardiography (ECG) signal monitoring upon different skin deformation. [Reproduced with permission from ref 117. Copyright 2020
American Chemical Society.]
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developed an injectable self-healing conductive hydrogel by
introducing 2-ureido-4[1H]-pyrimidinone (UPy) into a
PANI/PSS polymer network (Figure 4c(ii)).110 The UPy
groups can form dynamic multiple hydrogen bonds with each
other and serve as the crosslinking points of the PANI/PSS
network. The formed conductive hydrogel can be molded into
different shapes and injected through a needle.
Strong and sustainable adhesion to various surfaces,

especially on wet biological tissue/organ surfaces, is critical
to many in vivo applications of conductive hydrogel based
bioelectronic devices.111−114 Conductive hydrogels can achieve
adhesion on various biological surfaces via different interfacial
interactions, such as covalent bonds, hydrogen bonds, and
physical entanglement.45,115 However, to achieve strong
adhesion on biological surfaces is challenging as the interfacial
water may separate two surfaces at the molecular level and
hinder the interactions. Designing proper interfacial inter-
actions and controlling/utilizing the interfacial water are the
two main approaches for engineering conductive hydrogel
adhesives on both dry and wet surfaces.
By engineering proper interfacial interactions on both

surfaces, conductive hydrogels can achieve strong adhesion
to the target dry surface. For example, PEDOT:PSS hydrogels
can adhere to diverse conducting and insulating substrates by
adding a thin hydrophilic polyurethane (PU) adhesive layer
between the dry substrate and wet hydrogel (Figure 5a).116 To
achieve strong adhesion, the substrate was functionalized with
primary amine groups, which provide effective interfacial
interactions (covalent bonds and/or electrostatic interactions)
between the substrate and the adhesive PU polymer layer.
Additionally, the interfacial water can swell the PU layer, which
promotes the diffusion of PEDOT:PSS precursors into the PU
matrix, forming an inter-penetrating polymer network between
the two polymer layers.

Utilizing interfacial water from the wet and hydrogel surfaces
to facilitate the formation of interfacial interactions is a main
strategy for engineering conductive hydrogels with strong
adhesion on wet surfaces. With proper water content (about
44%), the Young’s modulus of natural silk fibroin hydrogel is
similar to that of human skin, which enhances its adhesive
ability to sweaty human skin and wet surface (pig heart)
(Figure 5b).117 When adhered to human skin, this SF/PPy
conductive hydrogel can obtain a stable ECG signals under
different skin deformation (squeezed, pressed, and stretched)
(Figure 5c). Strong adhesion can also be achieved by
controlling the gelation of the conductive hydrogels at the
interface, as the precursors of the conductive hydrogel can
diffuse through the interfacial water and penetrate into the
target surface, subsequently forming an interpenetrating
network upon gelation.118

Conductive hydrogels with shape memory function have
great potential in applications, such as bioelectronics sensors,
actuators, and soft robotics.119−121 A shape memory hydrogel
typically contains netpoints and stimuli responsive molecular
switches. Upon external stimulation, the switches become
flexible, and the netpoints are stable, resulting in an entropic
elastic behavior of the hydrogel network that recovers from a
temporary shape to its permanent shape (Figure 6a).
Hydrogels responsive to multiple stimuli can be synthesized
by including multiple types of switches, for example,
temperature, light, and solvent responsive motifs, into the
hydrogel polymer network.
The key obstacles for developing shape memory conductive

hydrogels include to maintain a stable electrical performance
during deformation and to ameliorate the weak mechanical
properties and dull stimuli-responsive characteristics of the
hydrogels. Thermoactivated shape memory conductive hydro-
gels could be achieved by incorporating conductive fillers (e.g.,

Figure 6. Shape memory conductive hydrogels. (a) Shape change mechanism of dual/multiple shape memory hydrogels. (b) Electro-
stimulated shape memory conductive hydrogel based on CNTs and EVA/PCL. [Reproduced with permission from ref 122. Copyright 2016
American Chemical Society.] (c) Shape memory conductive hydrogel by constructing Fe3+ interactions in PVA/catechol hydrogel matrix.
[Reproduced with permission from ref 123. Copyright 2020 Elsevier.] The formed shape memory conductive hydrogel exhibited shape
memory behavior in response to multiple stimuli, including temperature, solvent and Fe3+ concentration.
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CNTs, graphene platelets, and metal oxides) into a shape
memory PU hydrogel matrix.124 Similar approach was taken to
fabricate an electroactivated hydrogel by blending CNTs into a
poly(ethylene vinyl acetate)/poly(ε-caprolactone) (EVA/
PCL) hydrogel matrix (Figure 6b).122 Notably, introducing
proper physical or chemical interactions can enhance the
mechanical properties of shape memory conductive hydrogels.
A 5,5,6,6-tetrahydroxy-3,3,3,3-tetramethyl-1,1-spirobisindane
(TTSBI)-Fe3+/poly(vinyl alcohol) (PVA) hydrogel matrix
conductive hydrogel manifested strong mechanical properties
because of the construction of hydrogen bonds, hydrophobic
interactions, and metal coordination bonds in the hydrogel
matrix (Figure 6c).123 The hydrogel showed shape memory
response to multiple stimuli, including temperature, solvent,
and Fe3+ because of the crystalline domains of the PVA chains,
solvent−polymer interactions, and catechol/Fe3+ interactions,
respectively. To match the mechanical properties and geo-
metrical features between the flexible electrode and nerve
interface, a shape memory flexible electrode based on mesh
serpentine Au and the mixture of polycaprolactone diol (PCL),
poly(hexamethylene diisocyanate) (PHMD), and hexam-
ethylene diisocyanate (HDI), was developed for peripheral
nerve recording and stimulation application.47 This hydrogel
can self-climb onto the peripheral nerves driven by body
temperature, and matches the geometry of the peripheral
nerve, thus avoiding the irreversible neural damage caused by
complicated surgical implantation.
The biocompatibility, including nonimmunogenic responses

and nontoxic side effects, of a conductive hydrogel is a
stringent demand for bioelectronics in human health-related
applications.125 All the components in a conductive hydrogel
need to meet the criteria of biocompatibility, including the
polymer network, cross-linkers, conductive fillers, and their
degradation products. However, this requirement often brings
a dilemma in material selection. Natural polymers (e.g., gelatin,
agarose, chitin, hyaluronic acid, and silk fibroin) are ideal
building blocks for biocompatible hydrogels, but they suffer
from a few drawbacks including poor conductivity and material
processability. The optimization of natural polymers mainly
relies on facile chemical modification or functional group
grafting.126,127 Such modifications may raise safety concerns

due to the chemicals used and functional groups introduced in
the process. On the other hand, synthetic polymers, such as
PLA, PEG, and PEODT:PSS, provide controllable physical/
chemical properties to the hydrogels, while their biocompat-
ibility and bioactivity are typically lower than those of natural
polymers. A further challenge of developing biocompatible
conductive hydrogels is the integration of biocompatibility
with other functions, such as good conductivity, high
mechanical strength, and self-healing properties.
Silk fibroin (SF) is a widely used biomaterial for

constructing conductive hydrogels (Figure 7a), owing to its
good biocompatibility and biodegradability.128−131 SF is
composed of three parts: a heavy chain (∼390 kDa), a light
chain (∼26 kDa), and a glycoprotein chain (∼28 kDa). The
heavy chain of the SF contains hydrophobic and hydrophilic
domains (Figure 7b), forming the ordered crystalline and
amorphous domains in the fibroin, respectively. The crystalline
domain (β-sheet) can serve as physically crosslinking points of
the hydrogel, thereby avoiding the addition of potentially
hazardous chemical cross-linkers. The conductivity of SF
hydrogels can be easily tuned by incorporating conductive
fillers, such as carbon-based materials, metal nanomaterials,
and conductive polymers into the hydrogel network (Figure
7c).132,133 SF can also be combined with synthetic polymers to
form hybrid hydrogels with desirable functions for various
applications. For example, a hybrid of PAM and SF (PAM/SF)
hydrogel showed tunable mechanical properties and excellent
stretchability (600% strain). The conductivity of the hydrogel
can be tuned by introducing GO and PEDOT:PSS into the
PAM/SF hydrogel matrix.134 A mixture of SF and PVA could
form a hydrogel with improved stability and water absorption
properties. Yang et al. developed a SF/PVA/Borax conductive
hydrogel with high stretchable ability, self-healing properties,
and strong adhesion to artificial skin.135 Although SF could be
used as a biocompatible and degradable substrate for hydrogel
electronics, they still face challenges such as (1) biocompatible
concerns introduced by conductive polymers and fillers, (2)
rational structural design to achieve high elasticity without
chemical modification, and (3) the integration of additional
desired functions (e.g., adhesion to tissue/organs).

Figure 7. Biocompatible conductive hydrogels. (a) Hierarchical structure illustration of nature silk fiber. (b) Structure illustration of silk
fibroin’s heavy chain. [Reproduced with permission from ref 129. Copyright 2019 American Chemical Society.] (c) Schematic diagram of
preparing an interpenetrating silk/biopolymer conductive hydrogel by doping with bio-conductive fillers.
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The properties of conductive hydrogels can be tailored for

different applications.136−138 For example, conductive hydro-

gels face the challenge of fatigue fracture under overload and

exhaustion conditions, especially in the presence of severe

mechanical damage. Developing anti-fatigue fracture con-

ductive hydrogels can greatly improve the durability of the

hydrogel-based electronics in long-term usage.139 Under

subzero temperature conditions, most conductive hydrogels

Table 1. Examples of Multifunctional Conductive Hydrogels in Bioelectronics

hydrogel network features processing methods application ref

tough and stretchable conductive hydrogels
pure PEDOT:PSS stretchability (>35% strain) solvent annealing bioelectronic devices 72
PEDOT:PSS/IL conductivity (>4100 S/cm) solution mixing and annealing LED and FET devices 73
PANI/P-(AAm-co-HEMA) stretchability (about 220% strain) precursor reduction strain sensors 74
PAAm/PANI stretchability (626% strain) in situ polymerization strain sensors 44
MXene (Ti3C2Tx)-PVA strain sensitivity (gauge factor: 25) physical mixing pressure/strain sensors 46

self-healing and injectable conductive hydrogels
PPy/alginate-gelatin healed (In 40 min) low-temperature fabrication (−20 °C) repairable circuits 104
carrageenan/PAAm strain sensitivity (gauge factor: 343) solvent replacement and transfer biosignal detection 106
Dex-AT/CECS conductivity (10−2 mS/cm) chemical modification muscle regeneration 109
graphene/SF/Ca2+ healed (100%) (In 3 s) mask printing strain/humidity sensor 133

adhesive conductive hydrogels
PEDOT:PSS/PU adhesion strength (>120 kPa) electrodeposition conductive adhesives 116
PPy/SF adhesion strength (>1.5 MPa) interfacial polymerization ECG signals monitoring 117
PDA/CNTs adhesion strength (>50 KPa) glycerol−water binary solvent biosignal detection 45

shape memory conductive hydrogels
EVA/PCL/CNTs triggering voltage (20 V) physical mixing electroactuator 122
PVA/catechol-Fe3+ tensile strength (3.25 MPa) freeze−thaw and solvent exchange intelligent actuators 123
PCL/PHMD/HDI elastic modulus (100 MPa to 300 kPa) transfer printing peripheral nerve stimulation 47

biocompatible conductive hydrogels
PAM-SF/GO-PEDOT:PSS stretchability (600% strain) physical mixing strain/pressure sensors 134
SF-PVA/borax stretchability (>5000% strain) physical mixing biocompatible sensing platform 135
PEDOT-based microelectrode stretchability (>200% strain) photolithography implantable bioelectronics 49
PPy-PDA/gelatin-Fe3+ conductivity (6.51 × 10−4 S/cm) in situ polymerization cardiac patches 50
PEDOT/PU conductivity (120 S/cm) electropolymerization cell scaffold 150

others functional conductive hydrogels
chitosan/PANI antibacterial hydrogel chemical modification wound healing 108
PAAm/alginate/CaCl2 anti-freezing hydrogel physical mixing pressure sensors 140
PAM/cellulose-nano crystals/CNTs anti-fatigue-fracture hydrogel solution mixing strain/pressure sensors 137

Figure 8. Wearable bioelectronics based on multifunctional conductive hydrogels. (a) Body motion detection using a PVA flexible
conductive hydrogel sensor. [Reproduced with permission from ref 46. Copyright 2018 AAAS.] (b) Physiological signal detection using
skin-attachable conductive hydrogel electrodes. [Reproduced with permission from ref 151. Copyright 2019 Elsevier.] (c) Multiplexed
biomarks detection using PANI hydrogel based electrodes. [Reproduced with permission from ref 61. Copyright 2018 American Chemical
Society.]
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inevitably lose their elasticity and conductivity because of the
frozen aqueous solvent. To break this barrier, antifreezing
conductive hydrogels have been explored.140−143 Antibacterial
conductive hydrogels have also been widely tested in wound
healing.108,144 All these examples demonstrate that to meet the
actual needs of the practical applications is critical for the
design and fabrication of a functional conductive hydrogel.
Integrating versatile functions to one conductive hydrogel still
remains a challenging task.145−147

■ APPLICATIONS AND CHALLENGES OF
CONDUCTIVE HYDROGELS IN BIOELECTRONICS

Conductive hydrogel is an ideal building block for many
wearable electronic devices for the monitoring of biophysical
and biochemical markers of human body (Table 1).148,149

Because of their capability of converting mechanical stimuli
into electrical signals, conductive hydrogels can be used in
fabricating pressure and strain sensors.150 Sensors based on
MXene (Ti3C2Tx)-PVA hydrogel effectively detected motion
and subtle changes of a human body, and demonstrated high
stretchability, conformable skin adhesion, and preferably self-
healing properties (Figure 8a).46 Multifunctional conductive
hydrogels have also been used for making skin-attachable
flexible electrodes for the detection of electrophysiological
signals, including ECG, electromyography (EMG), and
electroencephalography (EEG) signals (Figure 8b). Wang et
al. reported skin-attachable PAA/PEDOT hydrogel electrodes
that can detect physiological signals of ECG and EMG.151 The
proposed PAA/PEDOT hydrogel electrodes were sufficiently
sensitive for noninvasive physiological signals detection. As

electrophysiological signals are typically weak, improving the
conductivity and the signal-to-noise ratio (SNR) is the primary
concern in the material design. Additionally, as the electrodes
are directly attached to human body for continuous signal
monitoring, skin adhesion, long-term stability, and biocompat-
ibility are also important criteria for the design of the
hydrogels.
Apart from biophysical sensors, conductive hydrogels have

also been used in sensors for detecting biochemical markers. Li
et al. reported biochemical sensors based on PANI hydrogel
for the real-time detection of lactate, glucose, and triglycerides
in human serum samples.61 The PANI hydrogel precursor,
platinum nanoparticles, and enzyme solutions (glucose
oxidase, lactic oxidase, and lipase/glycerol kinase/L-α-glycer-
ophosphate oxidase) were inkjet-printed on the designated
electrodes one by one to form a multiplexed biosensor (Figure
8c). The hydrophilic porous structure of the PANI hydrogel
increases the enzymatic reactivity and facilitates the trans-
portation of metabolite molecules, thus improving the
electrode’s sensor sensitively.
Conductive hydrogels have also demonstrated great

potential in implantable bioelectronics and tissue engineering

The biocompatibility and biodegrad-
ability of the hydrogels are essential to
various in vivo applications, along with
mechanical robustness and adhesion to
biological tissues.

Figure 9. Tissues interface bioelectronics based on multifunctional conductive hydrogels. (a) Cell induction and differentiation based on
PEDOT/PU conductive hydrogel. [Reproduced with permission from ref 152. Copyright 2014 Wiley-VCH.] The hydrogel showed good
biocompatibility, stretchability, and conductivity. (b) Cardiac cell therapy based on degradable CS-AT conductive hydrogel. [Reproduced
with permission from ref 153. Copyright 2016 American Chemical Society.] (c) Implantable bioelectronics based on PEDOT conductive
hydrogel for localized low voltage neuromodulation in a mouse. (d) Images of the PEDOT-based microelectrode (MECH) wrapped around
the mouse’s sciatic nerve. [Reproduced with permission from ref 49. Copyright 2019 Nature Publishing Group.]
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(Table 1). The high-water content and porous structure of the
hydrogel provide an extracellular matrix-like environment with
matched mechanical properties to the tissue, giving conductive
hydrogels significant advantages over traditional inorganic
materials such as silicon and metals. The biocompatibility and
biodegradability of the hydrogels are essential to various in
vivo applications, along with mechanical robustness and
adhesion to biological tissues.
The first reported PEDOT/PU conductive hydrogel

exhibited good biocompatibility to both muscle and nerve
cells (Figure 9a).152 A degradable chitosan-graf t-aniline
tetramer (CS-AT) conductive hydrogel with self-healing and
antibacterial activity was developed and used for cardiac cell
therapy (Figure 9b).153 Because of the early success of
applying conductive hydrogels in tissue engineering, the
potential of conductive hydrogels has been rapidly explored
in various aspects of tissue engineering, such as nerve cell
behavior regulation and wound healing,49,154−156 as well as
implantable bioelectronics for neurological signal detec-
tion.49,157 Liu et al. reported a PEDOT-based implantable
electronics for low-voltage neuromodulation (Figure 9c and d).
The electronics can be used to electrically stimulate the sciatic
nerve in a mouse and exhibit good stability and biocompat-
ibility for long-term implantation.

■ CONCLUSIONS AND PERSPECTIVES
Many challenges still need to be addressed to fulfill the full
potential of conductive hydrogels.158,159 Currently, incorporat-
ing conductive polymers, carbon-based materials, and their
derivatives into a nonconductive hydrogel matrix is still the
dominate approach for formulating conductive hydro-
gels.26,73,160 Conductive hydrogels formed by these traditional
methods have good processability but often have unstable
conductivity. One approach to improve the electrical
conductivity is to synthesis single-component conductive
hydrogels, thereby avoiding non-conductive network of the
hydrogel matrix.33,72 By adding crosslinking sites and
biodegradable linkers to various conductive polymers, they
can form single-component conductive hydrogels by in situ
polymerization or self-assembly with significantly improved
conductivity and bioactivity.26,161

The integration of conductive hydrogel with biological tissue
is another challenge in the field. Inorganic bioelectronics often
cause neuroinflammatory responses induced by chemical and
mechanical mismatch between inorganic bioelectronics and
biological tissues.16,21 In strong contrast, hydrogel based
bioelectronics show lower neuroinflammatory responses
benefited from their similar mechanical property to that of
biological tissue.162 However, the electron current (or hole
current in some cases) carried by hydrogel electronics have to
be converted to ion current at electrode/biological tissue
interfaces to stimulate the biological systems. This switching
requires a high voltage (about 1 V in water) between the
electrode/biological tissue interfaces, which can cause local
heat effect, electrode degradation, and biocompatibility
issues.125 Ionic hydrogel electronics could avoid the current
conversion at the electrode/tissue interfaces, and eliminate the
associated adverse effects form the high converted voltage.
However, ionic hydrogels often suffer from problems caused by
ion diffusion.163

Despite the great progress over the past decade, conductive
hydrogels are still in their infancy. Future attempts shall focus
on (i) methods to improve and maintain stable conductivity

and (ii) the robust integration of conductive hydrogels in
bioelectronic devices. Apart from issues on the materials sides,
we shall also pay more attentions to the biological interactions
between bioelectronics and tissues, which are essential to the
design of practical hydrogel electronics.
Biocompatible conductive hydrogels with self-healing, shape

memory, and tissue adhesion properties are critical for the

development of next generation bioelectronics. While high
conductivity, mechanical robustness, and high stretchability are
the basic requirements for most hydrogel-based electronics,
many practical applications have called for the needs of
developing conductive hydrogel with additional functionalities
such as shape memory, self-healing, and tissue adhesiveness.
For hydrogels operating at the tissue/cell interfaces, bio-
compatibility and biodegradability are also important concerns.
It is critical to fabricate conductive hydrogels with tailored
properties to meet the actual needs of different applications in
the era of personalized healthcare.
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